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Fundamental bright soliton solutions are studied numerically in a model for pulse propagation in
semiconductor-doped glass fibers with exponential saturation of the nonlinear dielectric function. It is
shown that the given model possesses two-state soliton solutions in the sense that for a given set of fiber
parameters there exist two soliton solutions with the same pulse width but with different peak ampli-
tudes, i.e., with different peak powers. The stability of these solitons under weak perturbations and the
effect of the fiber loss are also investigated. A comparison with earlier results for such solitons is made.
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I. INTRODUCTION

For the last two decades optical solitons in fibers have
attracted much attention from physicists as well as en-
gineers in connection with their tremendous utility in
all-optical communication systems [1-11], optical
switching devices [12-14], signal processing, optical
computing, etc. Recently, especially after Kaplan’s work
[15,16] and the subsequent development [14,17-19] of his
ideas, there has been increasing interest in multistable
solitons in fibers made of composite materials. As shown
by Enns and co-workers [17-19], it is possible to have
easy switching from one stable state of such solitons to
another, which makes multistable solitons attractive and
useful in applications for ultrafast switching devices.

Experimental results of the measurements of the non-
linear absorption [20,30] in semiconductor-doped glass
(SDG) and other composite materials show that non-
linearity saturates at not too high field intensities. Hence,
in modeling pulse propagation in fibers made of such ma-
terials, one must use the saturating form of the dielectric
function or the nonlinear refractive index. Usually one
adds a saturating term for the nonlinear refractive index
in place of the cubic term in the nonlinear Schrodinger
equation (NLSE) and models the pulse dynamics [22-26].
The other way is to take an appropriate saturating form
of the dielectric function and derive the differential equa-
tion, governing pulse dynamics, from Maxwell’s equa-
tions or the equivalent nonlinear wave equation using the
standard method of slowly varying envelope approxima-
tion (SVEA) and averaging over the cross section of the
fiber [5,27]. As discussed by Enns and Rangnekar [17],
one can model the system by various forms of nonlineari-
ty in the equation. To the best of our knowledge, besides
the steplike nonlinearity, the following saturable forms:

ﬁNL(|E|2)=£2‘_‘E’|‘;‘—" (1)
1+(|E|?/I)
and
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enr(|E[*)=Ise,[1—exp(—|E[*/I)] ()

of the nonlinear dielectric function €y; are the most fre-
quently used ones in the literature, where €, is the Kerr
coefficient for the dielectric function, and Ig is the inten-
sity at which saturation occurs. One of the authors de-
rived a nonlinear and dispersive partial differential equa-
tion [28,29] for the study of pulse propagation in SDG
fibers described by the dielectric function given by Eq.
(2). In this work we numerically determine the funda-
mental (N =1) bright soliton solutions in this model,
study their properties, and compare our results with
those obtained for the model based on the nonlinear re-

fractive index change Any given by [22]
A s B[ 3
"INL 1+(|E|2/1,) ’ :

n, being the Kerr coefficient for the refractive index re-
lated to €, through the expression €,=2nyn,.

II. MODEL

Consider pulse propagation in a monomode SDG fiber
governed by the following nonlinear wave equation:

_l_ aZDL :_1_ aZDNL

VE— , @)
c? a2 c* ar?
where
Di= [ "e(t")E(x,t —t")dt’ (5)
0
DN =¢,I (1—exp[ — |E|?/Ig])E )

are the linear and nonlinear parts of the electric induc-
tion vector D, respectively, € being the linear permittivi-
ty. As is customary, we assume the pulse, propagating
along the longitudinal axis x of the fiber, to be supported
entirely by the fundamental mode (HE; or LP), and
hence we can represent E as
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E(t,r,x)=eR(r)A(t,x)exp[ —i(wt—Byx)], (7

where e is the unit vector in the direction of polarization,
r is a vector in the transverse plane (y,z), R(r) is the
modal function describing the transverse distribution of
the electric field in the mode, A4 (¢,x) is the slowly vary-
ing complex envelope amplitude, and 3, is the propaga-
tion constant. Assuming the Gaussian form for trans-
verse intensity distribution and small temporal disper-
sion, we use the standard procedure based on SVEA and
average over the cross section of the fiber [5,27] to obtain
from Egs. (4)—(7) the following nonlinear partial
differential equation for the complex envelope amplitude
A(x,t):

1
A, +— A4, _%kmwAn
v
4
Iy0? 1 exp(—| A4|*/Ig)
:———8 — y
? 2ke? | 4|2/Ig | 42/1

(8)

where v, is the group velocity, and we have taken into ac-
count that for the HE; mode By~wV'e/c =k, k being
the wave number. Note that from here onward a suffix
stands for the partial derivative with respect to this un-
less stated otherwise.

In order to write Eq. (8) in dimensionless form, we in-
troduce the following variables:

A 0]
q=—=,6= |—n,I |x,
VT, o tals
12 9)
e nads x
T= | — -1,
c (—k,,) Vg

where we have assumed that we are working in the anom-
alous dispersion region in which (—k_,)>0. As a result
Eq. (8) can be written as [28,29]

1 exp(—|q|?)

1———+
lql? lql?

iqe+39,,+q =0. (10)

This is the basic evolution equation describing pulse dy-
namics in our model in the absence of dissipation, which
can be accounted for easily and which we shall deal with
below.

For convenience let us also write down the model equa-
tion for the case of Any; given by Eq. (3) in dimension-
less form, taking into account transformations (9). It has
the following form [22]:

2
T_i'_iﬂ'rz=0. (11)
q

Note that Egs. (10) and (11) differ not only in the func-
tional form of nonlinearity but also in the fact that while
Eq. (11) is an unaveraged model Eq. (10) has been derived
by performing averaging over the fiber cross section.
Averaging is desirable, since the transverse distribution
of the electric field of the mode is not uniform over the
fiber cross section.

lq§+ 2qrr+q
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The model described by Eq. (10) will be referred to as
the K model, while the one described by Eq. (11) as the
fractional model (f model). In what follows we shall
determine the soliton solutions in both these models and
compare their properties.

III. SOLITON SOLUTIONS (LOSSLESS CASE)

We look for the fundamental (i.e., N =1 in terms of the
inverse scattering method) bright soliton solutions to Egs.
(10) and (11) satisfying

lim q(§&, T)— hm qT(é‘ T) (12)

T—>F oo

and the condition of stationarity in £. Following
Hasegawa [27], we put

q(&,7)=[W(&7)] 2exp[i®(&,7)] . (13)
Then from (10) and (13) we obtain
$w§+q>"+ %\P}DT:O , (14)
~ 0t g Ve i (L@,
+ 1m0, )

where, according to Eq. (12), the amplitude W satisfies
11m W(E,7)= 11m V. (§,7)=0 (16)

7>t
As usual the condition of stationarity in § gives W,=0,
and hence from (14) we obtain

V()P =c(§) . 17

As is well known [27], the conditions of stationarity in £
and localization in 7 can be satisfied only if ¢(§)=0. Asa
result we obtain

O=p+ D, , (18)

where <I>0=<1>| =0 and S is a constant that represents the
nonlinear addition to the propagation constant. Substi-
tuting for ® from Eq. (18) into Eq. (15), we obtain

1 R
——-\I/” _ \I,I —
4y 82

1—exp(—V¥)
v

+(1—p)=0, (19)

where the prime stands for the ordinary derivative with
respect to 7. A similar treatment of Eq. (11) leads to the
following results for the f model. The phase ® is again
given by Eq. (18), but ¥ satisfies the following differential
equation:

L _L\pll_*_L

¥ 1+¥

o7 - —B=0. (20)

In order to determine the soliton solutions we must in-
tegrate Egs. (19) and (20) numerically. For that we need
appropriate values of 3, since not for all 8’s but only for
some particular values, for a given input amplitude ¥,
Eq. (19) or (20) will have bright soliton type solutions. If
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we multiply Eq. (19) by ¥’ and use the boundary condi-
tions (16), we obtain
2

d¥ | (1 —BW—Ein(¥)=0, 1)

1
8 |dr

where Ein is defined through the integral exponential
function E, and Euler constant § as [31]

Ein(y)=E(y)+In(y)+¢ . (22)

Since we are looking for N =1 bright soliton solutions
with a maximum g, =1V, at =0, we arrive at

B= v, (23)
Similarly one can obtain S for the f model. It is given by
— In(1+¥,) 24)
B= v, . (

IV. NUMERICAL RESULTS

For a given value of ¥, we determine the correspond-
ing value of B and then numerically integrate Egs. (19)
and (20) to determine W(7), i.e., the soliton shape. The
results of our study are depicted in Figs. 1—-12. Note that
in all our figures the solid line corresponds to the results
of the K model, while the broken line represents those for
the f model.

Figure 1 contains the soliton peak amplitude as a func-
tion of the dimensionless soliton energy

6=1,8 [ | f(n|tar, (25)
where I,=|g,|? is the dimensionless peak intensity of the
soliton, S is the effective cross sectional area of the fiber,
and f(7) is the soliton shape function. Note that S(K
model)/S(f model) =2(ry/a)*~1 in the Gaussian ap-
proximation [32], where r, is the distance at which the
intensity drops by a factor of 1/e, and a is the fiber core
radius. In comparing solitons of equal energy we have to
take this fact into account. Figure 2 contains the soliton
width 7, as a function of the energy &.

If we analyze these figures, we conclude that both mod-
els admit two-state soliton solutions in the sense that for
a given set of fiber parameters there exist two solitons
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FIG. 1. Soliton pulse amplitude as a function of dimension-
less energy 6. K model: solid curve; f model: dashed curve.
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FIG. 2. Soliton width 7, as a function of dimensionless ener-
gy 6. K model: solid curve; f model: dashed curve.
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FIG. 3. Nonlinear propagation constant shift 3 as a function
of dimensionless energy &. K model: solid curve; f model:
dashed curve.
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FIG. 4. Soliton width 7, as a function of the nonlinear propa-
gation constant shift 8. K model: solid curve; f model: dashed
curve.

q(T)

FIG. 5. Soliton shapes for 7p=1.3. K model: solid curve; f
model: dashed curve. The vertical lines indicate the full width
at half maximum intensity.
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FIG. 6. Soliton shapes for energy 6=5. K model: solid
curve; f model: dashed curve. The vertical lines indicate the
full width at half maximum intensity.
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FIG. 7. Contour plot for §=5 and I'=0.0138 in the K mod-
el. The dashed line depicts the variation of the soliton width.

100

80

-10 -5 0 S5 10

FIG. 8. Contour plot for §=5 and I’'=0.0138 in the f mod-
el. The dashed line depicts the variation of the soliton width.
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FIG. 9. Soliton peak amplitude g, as a function of propaga-
tion distance £ for 6 =5 and ’'=0.0138. K model: solid curve;
f model: dashed curve.
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with the same width but different energies and hence
different peak powers and shapes. Figure 3, which has 8
as a function of soliton energy &, shows that the solitons
in these models are not bistable in the sense advocated by
Kaplan [15,16], since & is not a double-valued but a
monotonic function of B. However, as shown in Fig. 4,
the soliton width is a double-valued function of B. For il-
lustration the shapes of the two-state solitons in both the
models for the same value of the pulse width (7,=1.3)
have been depicted in Fig. 5.

Further it is clear from Fig. 2 that the soliton width
obtainable in both models is bounded from below:
To= Tom» Where 7g,, is the minimum pulse width. The
smallest pulse width predicted by the K model is
Tom =1.186 for 6=5.028, and that by the f model is
Tom = 1.268 for 6 =6.663. Figure 2 also shows that for
smaller values of & each 7, corresponds to a single value
of energy, and hence the models have single soliton solu-
tions. This is understandable, since for smaller values of
power, expanding the nonlinear functions into series and
retaining only the leading order term in the evolution
equations in both the models, we recover the usual non-
linear Schrodinger equation which does not admit two-
state solitons. Finally it is clear from Fig. 3 that solitons
in both the models are stable under small perturbations,
since the stability criterion d &/dB> 0 is satisfied in the
whole range of 3 values.

V. SOLITON BEHAVIOR UNDER FIBER LOSS

The linear dissipation in a fiber can be accounted for
by adding a dissipation term —ia A to the right-hand
side of Eq. (8), where a is the phenomenological loss
coefficient measured in decibels per kilometer. After the
nondimensionalization given by Eq. (9), we obtain a dis-
sipation term —iIl'q on the right-hand side of Eq. (10),
where

ca

r= 26
wny I 26

is the dimensionless loss coefficient. As a result, the pulse
dynamics is governed by

. 1 exp(—lq|*) .
iqet+3q,,tq 1——|?+—P—Iq|—iq|— =—ilg
(K model), (27)
2
iqg+%q”+q#l|q|2=—il"q (f model) . (28)

We have numerically integrated Egs. (27) and (28) us-
ing the symmetrized split-step Fourier method. As initial
condition we chose the soliton solution of the lossless
equation for a given soliton energy &. The soliton evolu-
tion for I'=0.0138, corresponding to a loss rate of 0.12
dB/km, and 6=35 is given as a contour plot in Fig. 7 for
the K model and in Fig. 8 for the f model. Figure 9 con-
tains the variation of the soliton amplitude with the dis-
tance of propagation, while Fig. 10 depicts the evolution
of the pulse width as a function of £&. From these figures
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FIG. 10. Soliton width variation with the distance of propa-
gation for §=5 and I'=0.0138. K model: solid curve; f model:
dashed curve.

it is clear that initially the soliton width 7, increases slow-
ly, showing that the soliton tries to preserve its soliton
property. Subsequently, because of the considerable de-
crease in the soliton amplitude, dispersion takes over and
the pulse width monotonically increases at a faster rate,
as is visible from Fig. 10. All this is consistent with the
results of soliton perturbation theory [21] for the non-
linear Schrodinger equation. The quantitative difference
may be assigned to the strong saturating nonlinearity. It
is also worth mentioning that for higher values of energy
we see from the contour plots (Fig. 11 for the K model
and Fig. 12 for the f model) that the pulse width initially
decreases and then starts increasing, leading subsequently
to pulse dispersion.

V1. COMPARISON OF RESULTS
FOR THE TWO MODELS

It is easy to conclude from Figs. 1 and 2 that for a
given value of energy & within the range investigated,
the soliton in the K model is sharper, i.e., narrower with
a smaller width, and has a higher peak power. Figure 6,
in which we have plotted the soliton shapes with the
same energy ¢ =5.0 in both models, clearly confirms this
statement. It is also clear from Fig. 3 that for a given en-
ergy & the nonlinear propagation constant B or,
equivalently, the self-phase modulation is higher in the K
model. In turn, since B is a monotonically increasing
function of the soliton peak intensity, a higher value of 8
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FIG. 11. Contour plot for §=25 and I'=0.0138 in the K
model. The dashed line depicts the variation of the soliton
width.
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FIG. 12. Contour plot for §=25 and I"'=0.0138 in the f
model. The dashed line depicts the variation of the soliton
width.

for a given energy clearly indicates a higher peak intensi-
ty and hence sharper characteristics of solitons in the K
model. This property is pronounced in the region of
pulse energy 2= & <8. From Figs. 1 and 2 it can be seen
that the minimum soliton pulse width obtainable, in the
relevant range of energy, is always less in the K model
than in the f model. For example, 7, in the K model is
approximately 7.2% less than its value in the f model for
&=5, while it is 9.2% less for 6§=2.5. Also, for
1.186 =7, < 1.268 there is no two-state soliton in the f
model. Hence we can conclude that to achieve the same
effectiveness in switching with sharper soliton charac-
teristics, we need less energy in the K model compared to
the f model.

Finally, we see from Fig. 10 that in the lossy case a sol-
iton of the same energy & propagates a larger distance in
the K model compared to the corresponding soliton in
the f model before undergoing the same amount of
broadening. Hence the solitons in the K model behave in
a more robust way under the influence of fiber loss than
the solitons in the f model. By this we mean the follow-
ing. Suppose in a practical system that there is an upper
limit (say 7;) of tolerance on the soliton width related to
detection or stability or switching, etc. Then Fig. 10
shows that the solitons of the K model propagate for a
larger distance compared to the solitons in the f model
before the soliton width reaches the critical value 7;.

VII. CONCLUSION

We have obtained and studied the properties of the
fundamental bright solitons numerically in the K model,
Egs. (10) and (27), as well as in the f model, Egs. (11) and
(28). Our results show that both these models do not con-
tain bistable soliton solutions in the sense advocated by
Kaplan [15], but they do admit two-state soliton solutions
which will be useful for studies related to switching. Fur-
ther, our results clearly show that if we compare solitons,
with the same value of energy in the given models, then
the solitons in the K model are sharper, i.e., narrower and
taller, and that they are more robust under the influence
of fiber loss. Also, for a given pulse width the energy
needed for the generation of two-state solitons is less, and
the range of soliton widths for which two-state solitons
exist is larger in the K model than the f model.
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